Test Code TPMT3 Thiopurine Methyltransferase Activity Profile, Erythrocytes
Useful For
Detection of individuals with low thiopurine methyltransferase (TPMT) activity who are at risk for excessive myelosuppression or severe hematopoietic toxicity when taking thiopurine drugs
Detection of individuals with hyperactive TPMT activity who have therapeutic resistance to thiopurine drugs and may develop hepatotoxicity if treated with these drugs
Special Instructions
Method Name
Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)
Reporting Name
TPMT Activity Profile, RBCSpecimen Type
Whole bloodSpecimen Required
Patient Preparation: Thiopurine methyltransferase (TPMT) enzyme activity can be inhibited by several drugs and may contribute to falsely low results. Patients should abstain from the following drugs for at least 48 hours prior to TPMT testing: naproxen (Aleve), ibuprofen (Advil, Motrin), ketoprofen (Orudis), furosemide (Lasix), sulfasalazine (Azulfidine), mesalamine (Asacol), olsalazine (Dipentum), mefenamic acid (Ponstel), trimethoprim (Proloprim), methotrexate, thiazide diuretics, and benzoic acid inhibitors.
Container/Tube:
Preferred: Lavender top (EDTA)
Acceptable: Green top (sodium or lithium heparin), dark blue top (metal free sodium heparin), or plasma gel tubes
Specimen Volume: 5 mL
Specimen Minimum Volume
3 mL
Specimen Stability Information
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Whole blood | Refrigerated (preferred) | 6 days | |
Ambient | 6 days |
Reference Values
6-Methylmercaptopurine (normal): 3.00-6.66 nmol/mL/hour
6-Methylmercaptopurine riboside (normal): 5.04-9.57 nmol/mL/hour
6-Methylthioguanine riboside (normal): 2.70-5.84 nmol/mL/hour
Interpretation
This assay is used to detect individuals with low and intermediate thiopurine methyltransferase (TPMT) activity who may be at risk for myelosuppression when exposed to standard doses of thiopurines, including azathioprine (Imuran), 6-mercaptopurine (Purinethol), or 6-thioguanine (Thioguanine Tabloid). TPMT is the primary metabolic route for inactivation of thiopurine drugs in the bone marrow. When TPMT activity is low, it is predicted that proportionately more 6-mercaptopurine can be converted into the cytotoxic 6-thioguanine nucleotides that accumulate in the bone marrow causing excessive toxicity.
This test can also detect TMPT hyperactivity. Individuals who are hypermetabolizers cannot achieve therapeutic levels as they have therapeutic resistance to thiopurine drugs. Severe hepatotoxicity may develop if an individual with TPMT hyperactivity is treated with higher and higher doses of thiopurine drugs.
The activity of TPMT is measured by 3 different substrates. Reports include the quantitative activity level of TPMT for each of 3 different substrates and an interpretation of these results. When abnormal results are detected, a detailed interpretation is given, including an overview of results and suggestion as to whether patient has TPMT deficiency or hyperactivity, as well as discussion of treatment considerations.
TPMT phenotype testing does not replace the need for clinical monitoring of patients treated with thiopurine drugs. Genotype for TPMT cannot be inferred from TPMT activity (phenotype). Phenotype testing should not be requested for patients currently treated with thiopurine drugs.
TPMT activity is measured in red blood cells. If a patient has had a blood transfusion within 60 days of testing, the patient's true enzyme activity may not be accurately reflected.
Clinical Reference
1. Relling MV, Gardner EE, Sandborn WJ, et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther. 2011;89(3):387-391
2. Lennard L. Implementation of TPMT testing. Br J Clin Pharmacol. 2014;77(4):704-714
3. Schedel J, Godde A, Schutz E, et al. Impact of thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations in patients with chronic inflammatory diseases. Ann N Y Acad Sci. 2006;1069:477-491
4. Zhou S. Clinical pharmacogenomics of thiopurine S-methyltransferase. Curr Clin Pharmacol. 2006;1(1):119-128
5. Asadov C, Aliyeva G, Mustafayeva K. Thiopurine S-methyltransferase as a pharmacogenetic biomarker: Significance of testing and review of major methods. Cardiovasc Hematol Agents Med Chem. 2017;15(1):23-30
Day(s) Performed
Monday, Wednesday, Friday
Report Available
4 to 7 daysPerforming Laboratory
Mayo Clinic Laboratories in RochesterTest Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.CPT Code Information
84433
LOINC Code Information
Test ID | Test Order Name | Order LOINC Value |
---|---|---|
TPMT3 | TPMT Activity Profile, RBC | 91139-6 |
Result ID | Test Result Name | Result LOINC Value |
---|---|---|
48038 | Interpretation | 59462-2 |
48034 | 6-Methylmercaptopurine | 91141-2 |
48035 | 6-Methylmercaptopurine riboside | 91142-0 |
48036 | 6-Methylthioguanine riboside | 91143-8 |
48037 | Reviewed By | 18771-6 |
Forms
1. New York Clients-Informed consent is required. Document on the request form or electronic order that a copy is on file. The following documents are available:
-Informed Consent for Genetic Testing (T576)
-Informed Consent for Genetic Testing-Spanish (T826)
2. If not ordering electronically, complete, print, and send Gastroenterology and Hepatology Test Request (T728) with the specimen
Testing Algorithm
For more information see:
-Ulcerative Colitis and Crohn Disease Therapeutic Drug Monitoring Algorithm
-TPMT Testing in the Treatment of Inflammatory Bowel Disease Algorithm