Test Code TGRP Testosterone, Total and Free, Serum
Additional Codes
Mayo Test ID |
---|
TGRP |
Reporting Name
Testosterone, Total and Free, SUseful For
Alternative, second-level test for suspected increases or decreases in physiologically active testosterone:
-Assessment of androgen status in cases with suspected or known sex hormone-binding globulin-binding abnormalities
-Assessment of functional circulating testosterone in early pubertal boys and older men
-Assessment of functional circulating testosterone in women with symptoms or signs of hyperandrogenism but normal total testosterone levels
-Monitoring of testosterone therapy or antiandrogen therapy in older men and in female patients
Profile Information
Test ID | Reporting Name | Available Separately | Always Performed |
---|---|---|---|
FRTST | Testosterone, Free, S | No | Yes |
TTST | Testosterone, Total, S | Yes | Yes |
Performing Laboratory
Mayo Clinic Laboratories in RochesterSpecimen Type
Serum RedOrdering Guidance
This is a second-level test for suspected increases or decreases in physiologically active testosterone. The preferred test for assessment of active testosterone is TTBS / Testosterone, Total and Bioavailable, Serum.
Necessary Information
Patient's age and sex are required.
Specimen Required
Supplies: Sarstedt Aliquot Tube, 5 mL (T914)
Collection Container/Tube: Red top (serum gel/SST are not acceptable)
Submission Container/Tube: Plastic vial
Specimen Volume: 2.5 mL
Collection Instructions: Centrifuge and aliquot serum into a plastic vial
Specimen Minimum Volume
1 mL
Specimen Stability Information
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Serum Red | Refrigerated (preferred) | 14 days | |
Frozen | 60 days |
Reference Values
TESTOSTERONE, FREE
Males (adult):
20-<25 years: 5.25-20.7 ng/dL
25-<30 years: 5.05-19.8 ng/dL
30-<35 years: 4.85-19.0 ng/dL
35-<40 years: 4.65-18.1 ng/dL
40-<45 years: 4.46-17.1 ng/dL
45-<50 years: 4.26-16.4 ng/dL
50-<55 years: 4.06-15.6 ng/dL
55-<60 years: 3.87-14.7 ng/dL
60-<65 years: 3.67-13.9 ng/dL
65-<70 years: 3.47-13.0 ng/dL
70-<75 years: 3.28-12.2 ng/dL
75-<80 years: 3.08-11.3 ng/dL
80-<85 years: 2.88-10.5 ng/dL
85-<90 years: 2.69-9.61 ng/dL
90-<95 years: 2.49-8.76 ng/dL
95-100+ years: 2.29-7.91 ng/dL
Males (children):
<1 year: Term infants
1-15 days: 0.20-3.10 ng/dL*
16 days-1 year: Values decrease gradually from newborn (0.20-3.10 ng/dL) to prepubertal levels
*Forest MG, Cathiard AM, Bertrand JA. Total and unbound testosterone levels in the newborn and in normal and hypogonadal children: use of a sensitive radioimmunoassay for testosterone. J Clin Endocrinol Metab. 1973;36(6):1132-1142
1-8 years: <0.13 ng/dL
9 years: <0.13-0.45 ng/dL
10 years: <0.13-1.26 ng/dL
11 years: <0.13-5.52 ng/dL
12 years: <0.13-9.28 ng/dL
13 years: <0.13-12.6 ng/dL
14 years: 0.48-15.3 ng/dL
15 years: 1.62-17.7 ng/dL
16 years: 2.93-19.5 ng/dL
17 years: 4.28-20.9 ng/dL
18 years: 5.40-21.8 ng/dL
19 years: 5.36-21.2 ng/dL
Females (adult):
20-<25 years: <0.13-1.08 ng/dL
25-<30 years: <0.13-1.06 ng/dL
30-<35 years: <0.13-1.03 ng/dL
35-<40 years: <0.13-1.00 ng/dL
40-<45 years: <0.13-0.98 ng/dL
45-<50 years: <0.13-0.95 ng/dL
50-<55 years: <0.13-0.92 ng/dL
55-<60 years: <0.13-0.90 ng/dL
60-<65 years: <0.13-0.87 ng/dL
65-<70 years: <0.13-0.84 ng/dL
70-<75 years: <0.13-0.82 ng/dL
75-<80 years: <0.13-0.79 ng/dL
80-<85 years: <0.13-0.76 ng/dL
85-<90 years: <0.13-0.73 ng/dL
90-<95 years: <0.13-0.71 ng/dL
95-100+ years: <0.13-0.68 ng/dL
Females (children):
<1 year: Term infants
1-15 days: <0.13-0.25 ng/dL*
16 days-1 year: Values decrease gradually from newborn (<0.13-0.25 ng/dL) to prepubertal levels
*Forest MG, Cathiard AM, Bertrand JA. Total and unbound testosterone levels in the newborn and in normal and hypogonadal children: use of a sensitive radioimmunoassay for testosterone. J Clin Endocrinol Metab. 1973;36(6):1132-1142
1-4 years: <0.13 ng/dL
5 years: <0.13 ng/dL
6 years: <0.14 ng/dL
7 years: <0.13-0.23 ng/dL
8 years: <0.13-0.34 ng/dL
9 years: <0.13-0.46 ng/dL
10 years: <0.13-0.59 ng/dL
11 years: <0.13-0.72 ng/dL
12 years: <0.13-0.84 ng/dL
13 years: <0.13-0.96 ng/dL
14 years: <0.13-1.06 ng/dL
15-18 years: <0.13-1.09 ng/dL
19 years: <0.13-1.08 ng/dL
TESTOSTERONE, TOTAL
Males
0-5 months: 75-400 ng/dL
6 months-9 years: <7-20 ng/dL
10-11 years: <7-130 ng/dL
12-13 years: <7-800 ng/dL
14 years: <7-1,200 ng/dL
15-16 years: 100-1,200 ng/dL
17-18 years: 300-1,200 ng/dL
≥19 years: 240-950 ng/dL
Tanner Stages**
I (prepubertal): <7-20
II: 8-66
III: 26-800
IV: 85-1,200
V (young adult): 300-950
Females
0-5 months: 20-80 ng/dL
6 months-9 years: <7-20 ng/dL
10-11 years: <7-44 ng/dL
12-16 years: <7-75 ng/dL
17-18 years: 20-75 ng/dL
≥19 years: 8-60 ng/dL
Tanner Stages**
I (prepubertal): <7-20
II: <7-47
III: 17-75
IV: 20-75
V (young adult): 12-60
**Puberty onset (transition from Tanner stage I to Tanner stage II) occurs for boys at a median age of 11.5 (±2) years and for girls at a median age of 10.5 (±2) years. There is evidence that it may occur up to 1 year earlier in obese girls and in African American girls. For boys, there is no definite proven relationship between puberty onset and body weight or ethnic origin. Progression through Tanner stages is variable. Tanner stage V (young adult) should be reached by age 18.
Day(s) Performed
Monday through Saturday
CPT Code Information
84402
84403
LOINC Code Information
Test ID | Test Order Name | Order LOINC Value |
---|---|---|
TGRP | Testosterone, Total and Free, S | 58952-3 |
Result ID | Test Result Name | Result LOINC Value |
---|---|---|
3631 | Testosterone Free | 2991-8 |
8533 | Testosterone, Total, S | 2986-8 |
Interpretation
Total testosterone and general interpretation of testosterone abnormalities:
In male patients:
Decreased testosterone levels indicate partial or complete hypogonadism. Serum testosterone levels are usually below the reference range. The cause is either primary or secondary/tertiary (pituitary/hypothalamic) testicular failure.
Primary testicular failure is associated with increased luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels, and decreased total, bioavailable, and free testosterone levels. Causes include:
-Genetic causes (eg, Klinefelter syndrome, XXY males)
-Developmental causes (eg, testicular maldescent)
-Testicular trauma or ischemia (eg, testicular torsion, surgical mishap during hernia operations)
-Infections (eg, mumps)
-Autoimmune diseases (eg, autoimmune polyglandular endocrine failure)
-Metabolic disorders (eg, hemochromatosis, liver failure)
-Orchidectomy
Secondary/tertiary hypogonadism, also known as hypogonadotropic hypogonadism, shows low testosterone and low, or inappropriately "normal," LH/FSH levels; causes include:
-Inherited or developmental disorders of hypothalamus and pituitary (eg, Kallmann syndrome, congenital hypopituitarism)
-Pituitary or hypothalamic tumors
-Hyperprolactinemia of any cause
-Malnutrition or excessive exercise
-Cranial irradiation
-Head trauma
-Medical or recreational drugs (eg, estrogens, gonadotropin releasing hormone [GnRH] analogs, cannabis)
Increased testosterone levels:
-In prepubertal boys, increased levels of testosterone are seen in precocious puberty. Further workup is necessary to determine the causes of precocious puberty.
-In adult men, testicular or adrenal tumors or androgen abuse might be suspected if testosterone levels exceed the upper limit of the normal range by more than 50%.
Monitoring of testosterone replacement therapy:
Aim of treatment is normalization of serum testosterone and LH. During treatment with depot-testosterone preparations, trough levels of serum testosterone should still be within the normal range, while peak levels should not be significantly above the normal young adult range.
Monitoring of antiandrogen therapy:
Aim is usually to suppress testosterone levels to castrate levels or below (no more than 25% of the lower reference range value).
In female patients:
Decreased testosterone levels may be observed in primary or secondary ovarian failure, analogous to the situation in men, alongside the more prominent changes in female hormone levels. Most women with oophorectomy have a significant decrease in testosterone levels.
Increased testosterone levels may be seen in:
-Congenital adrenal hyperplasia: Non-classical (mild) variants may not present in childhood but during or after puberty. In addition to testosterone, multiple other androgens or androgen precursors are elevated, such as 17-hydroxyprogesterone (OHPG / 17-Hydroxyprogesterone, Serum), often to a greater degree than testosterone.
-Prepubertal girls: Analogous to boys, but at lower levels, increased levels of testosterone are seen in precocious puberty.
-Ovarian or adrenal neoplasms: High estrogen values also may be observed, and LH and FSH are low or "normal." Testosterone-producing ovarian or adrenal neoplasms often produce total testosterone values above 200 ng/dL.
-Polycystic ovarian syndrome: Hirsutism, acne, menstrual disturbances, insulin resistance and, frequently, obesity form part of this syndrome. Total testosterone levels may be normal or mildly elevated and uncommonly above 200 ng/dL.
Monitoring of testosterone replacement therapy:
The efficacy of testosterone replacement in female patients is under study. If it is used, total testosterone levels should always be kept within the normal range for females. Bioavailable or free testosterone levels also should be monitored to avoid over treatment.
Monitoring of antiandrogen therapy:
Antiandrogen therapy is most frequently employed in the management of mild-to-moderate idiopathic female hyperandrogenism, as seen in polycystic ovarian syndrome. Total testosterone levels are a relatively crude guideline for therapy and can be misleading. Therefore, bioavailable or free testosterone also should be monitored to ensure treatment adequacy. However, there are no universally agreed biochemical end points and the primary treatment end point is the clinical response.
Free testosterone:
Usually, bioavailable and free testosterone levels parallel the total testosterone levels. However, a number of conditions and medications are known to increase or decrease the sex hormone-binding globulin (SHBG) concentration, which may cause total testosterone concentration to change without necessarily influencing the bioavailable or free testosterone concentration, or vice versa:
-Treatment with corticosteroids and sex steroids (particularly oral conjugated estrogen) can result in changes in SHBG levels and availability of sex-steroid binding sites on SHBG. This may make diagnosis of subtle testosterone abnormalities difficult.
-Inherited abnormalities in SHBG binding
-Liver disease and severe systemic illness
-In pubertal boys and adult men, mild decreases of total testosterone without LH abnormalities can be associated with delayed puberty or mild hypogonadism. In this case, either bioavailable or free testosterone measurements are better indicators of mild hypogonadism than determination of total testosterone levels.
-In polycystic ovarian syndrome and related conditions, there is often significant insulin resistance, which is associated with low SHBG levels. Consequently, bioavailable or free testosterone levels may be more significantly elevated.
Either bioavailable (TTBS / Testosterone, Total and Bioavailable, Serum) or free testosterone should be used as supplemental tests to total testosterone in the above situations. The correlation coefficient between bioavailable and free testosterone (by equilibrium dialysis) is 0.9606. However, bioavailable testosterone is usually the preferred test, as it more closely reflects total bioactive testosterone, particularly in older men; see TTBS / Testosterone, Total and Bioavailable, Serum. Older men not only have elevated SHBG levels, but albumin levels also may vary due to coexisting illnesses.
Cautions
Early-morning testosterone levels in young male individuals are, on average, 50% higher than p.m. levels. Reference values were established using specimens collected in the morning.
Testosterone levels can fluctuate substantially between different days and sometimes even more rapidly. Assessment of androgen status should be based on more than a single measurement.
The low end of the normal reference range for total testosterone in prepubertal subjects is not yet established.
While free testosterone can be used for the same indications as bioavailable testosterone, determination of bioavailable testosterone levels may be superior to free testosterone measurement in most situations.
Clinical Reference
1. Manni A, Pardridge WM, Cefalu W, et al. Bioavailability of albumin-bound testosterone. J Clin Endocrinol Metab. 1985;61(4):705-710
2. New MI, Josso N. Disorders of gonadal differentiation and congenital adrenal hyperplasia. Endocrinol Metab Clin North Am. 1988;17(2):339-366
3. Morley JE, Perry HM 3rd. Androgen deficiency in aging men: role of testosterone replacement therapy. J Lab Clin Med. 2000;135(5):370-378. doi:10.1067/mlc.2000.106455
4. Sizonenko PC, Paunier L. Hormonal changes in puberty III: Correlation of plasma dehydroepiandrosterone, testosterone, FSH, and LH with stages of puberty and bone age in normal boys and girls and in patients with Addison's disease or hypogonadism or with premature or late adrenarche. J Clin Endocrinol Metab. 1975;41(5):894-904. doi:10.1210/jcem-41-5-894
5. Goudas VT, Dumesic DA. Polycystic ovary syndrome. Endocrinol Metab Clin North Am. 1997;26(4):893-912. doi:10.1016/s0889-8529(05)70286-3
6. Braunstein GD. Androgen insufficiency in women: summary of critical issues. Fertil Steril. 2002;77 Suppl 4:S94-S99. doi:10.1016/s0015-0282(02)02962-x
7. Juul A, Skakkebaek NE. Androgens and the ageing male. Hum Reprod Update. 2002;8(5):423-433. doi:10.1093/humupd/8.5.423
8. Hackbarth JS, Hoyne JB, Grebe SK, Singh RJ. Accuracy of calculated free testosterone differs between equations and depends on gender and SHBG concentration. Steroids. 2011;76(1-2):48-55. doi:10.1016/j.steroids.2010.08.008
9. Goldman AL, Bhasin S, Wu FCW, Krishna M, Matsumoto AM, Jasuja R. A reappraisal of testosterone's binding in circulation: Physiological and clinical implications. Endocr Rev. 2017;38(4):302-324. doi:10.1210/er.2017-00025
Report Available
3 to 8 daysMethod Name
FRTST: Equilibrium Dialysis/Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)
TTST: Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)
Forms
If not ordering electronically, complete, print, and send a General Request (T239) with the specimen.