Test Code RENCP Hereditary Renal Cancer Panel, Varies
Ordering Guidance
Customization of this panel and single gene analysis for any gene present on this panel are available. For more information see CGPH / Custom Gene Panel, Hereditary, Next-Generation Sequencing, Varies.
Targeted testing for familial variants (also called site-specific or known mutations testing) is available for the genes on this panel. See FMTT / Familial Variant, Targeted Testing, Varies. To obtain more information about this testing option, call 800-533-1710.
Testing minors for adult-onset predisposition syndromes is discouraged by the American Academy of Pediatrics, the American College of Medical Genetics and Genomics, and the National Society of Genetic Counselors.
Shipping Instructions
Specimen preferred to arrive within 96 hours of collection.
Specimen Required
Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. For instructions for testing patients who have received a bone marrow transplant, call 800-533-1710.
Specimen Type: Whole blood
Container/Tube:
Preferred: Lavender top (EDTA) or yellow top (ACD)
Acceptable: Any anticoagulant
Specimen Volume: 3 mL
Collection Instructions:
1. Invert several times to mix blood.
2. Send whole blood specimen in original tube. Do not aliquot.
Specimen Stability Information: Ambient (preferred) 4 days/Refrigerated
Additional Information: To ensure minimum volume and concentration of DNA is met, the preferred volume of blood must be submitted. Testing may be canceled if DNA requirements are inadequate.
Forms
1. New York Clients-Informed consent is required. Document on the request form or electronic order that a copy is on file. The following documents are available:
-Informed Consent for Genetic Testing (T576)
-Informed Consent for Genetic Testing-Spanish (T826)
2. Molecular Genetics: Inherited Cancer Syndromes Patient Information (T519)
3. If not ordering electronically, complete, print, and send a Oncology Test Request (T729) with the specimen.
Useful For
Evaluating patients with a personal or family history suggestive of a hereditary renal cancer syndrome
Establishing a diagnosis of a hereditary renal cancer syndrome allowing for targeted cancer surveillance based on associated risks
Identifying genetic variants associated with increased risk for renal and/or other cancers, allowing for predictive testing and appropriate screening of at-risk family members
Special Instructions
Method Name
Sequence Capture and Targeted Next-Generation Sequencing (NGS) followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing
Reporting Name
Hereditary Renal Cancer PanelSpecimen Type
VariesSpecimen Minimum Volume
1 mL
Specimen Stability Information
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Varies | Varies |
Reference Values
An interpretive report will be provided.
Interpretation
All detected variants are evaluated according to American College of Medical Genetics and Genomics recommendations.(16) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.
Clinical Reference
1. American Cancer Society. Cancer Facts and Figures 2020. American Cancer Society; 2020. Accessed November 7, 2022. Available at www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2020.html
2. Haas NB, Nathanson KL. Hereditary renal cancer syndromes. Adv Chronic Kidney Dis. 2014;21(1):81-90
3. Carlo MI, Hakimi AA, Stewart GD, Bratslavsky G, et al. Familial kidney cancer: Implications of new syndromes and molecular insights. Eur Urol. 2019;76(6):754-764
4. Rednam SP, Erez A, Druker H, et al. Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: Clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res. 2017;23(12):e68-e75
5. Gill AJ, Hes O, Papathomas T, et al. Succinate dehydrogenase (SDH)-deficient renal carcinoma: a morphologically distinct entity: a clinicopathologic series of 36 tumors from 27 patients. Am J Surg Pathol. 2014;38(12):1588-1602
6. Gill AJ. Succinate dehydrogenase (SDH)-deficient neoplasia. Histopathology. 2018;72(1):106-116
7. Lenders JW, Duh QY, Eisenhofer G, et al. Endocrine Society: Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(6):1915-1942
8. Benn DE, Gimenez-Roqueplo AP, Reilly JR et al. Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. J Clin Endocrinol Metab. 2006;91(3):827-836. doi:10.1210/jc.2005-1862
9. Gupta S, Jimenez RE, Herrera-Hernandez L, et al. Renal neoplasia in tuberous sclerosis: a study of 41 patients. Mayo Clin Proc. 2021;96(6):1470-1489
10. Henske EP, Jozwiak S, Kingswood JC, et al. Tuberous sclerosis complex. Nat Rev Dis Primers. 2016;2:16035
11. Doros LA, Rossi CT, Yang J, et al. DICER1 mutations in childhood cystic nephroma and its relationship to DICER1-renal sarcoma. Mod Pathol. 2014;27(9):1267-1280
12. Schultz KAP, Stewart DR, Kamihara J, et al. DICER1 tumor predisposition. In: Adam MP, Everman DB, Mirzaa GM, et al, eds: GeneReviews [Internet]. University of Washington, Seattle; 2014. Updated April 30, 2020. Accessed November 7, 2022. Available at www.ncbi.nlm.nih.gov/books/NBK196157/
13. Bertolotto C, Lesueur F, Giuliano S, et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature. 2011;480(7375):94-98. doi:10.1038/nature10539. Erratum in: Nature. 2016 Mar 3;531(7592):126
14. Nemes K, Bens S, Bourdeaut F, et al. Rhabdoid tumor predisposition syndrome. In: Adam MP, Everman DB, Mirzaa GM, et al, eds. GeneReviews [Internet]. University of Washington, Seattle; 2017. Updated May 12, 2022 Accessed November 7, 2022. Available at www.ncbi.nlm.nih.gov/books/NBK469816/
15. Motzer RJ, Jonasch E, Boyle S, et al. NCCN guidelines insights: kidney cancer, version 1.2021. J Natl Compr Canc Netw. 2020;18(9):1160-1170
16. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424
Day(s) Performed
Varies
Report Available
14 to 21 daysPerforming Laboratory
Mayo Clinic Laboratories in RochesterTest Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.CPT Code Information
81405 x 3
81321
81406 x 2
81404 x 2
81351
81407
81479
81479 (if appropriate for government payers)
LOINC Code Information
Test ID | Test Order Name | Order LOINC Value |
---|---|---|
RENCP | Hereditary Renal Cancer Panel | In Process |
Result ID | Test Result Name | Result LOINC Value |
---|---|---|
614827 | Test Description | 62364-5 |
614828 | Specimen | 31208-2 |
614829 | Source | 31208-2 |
614830 | Result Summary | 50397-9 |
614831 | Result | 82939-0 |
614832 | Interpretation | 69047-9 |
614833 | Resources | 99622-3 |
614834 | Additional Information | 48767-8 |
614835 | Method | 85069-3 |
614836 | Genes Analyzed | 48018-6 |
614837 | Disclaimer | 62364-5 |
614838 | Released By | 18771-6 |