Test Code MOGFS Myelin Oligodendrocyte Glycoprotein (MOG-IgG1) Fluorescence-Activated Cell Sorting (FACS) Assay, Serum
Specimen Required
Patient Preparation: For optimal antibody detection, specimen collection should occur prior to initiation of immunosuppressant medication.
Collection Container/Tube:
Preferred: Red top
Acceptable: Serum gel
Submission Container/Tube: Plastic vial
Specimen Volume: 2 mL
Collection Instructions: Centrifuge and aliquot serum into a plastic vial.
Forms
If not ordering electronically, complete, print, and send 1 of the following with the specimen:
-Neurology Specialty Testing Client Test Request (T732)
-General Request (T239)
Useful For
Diagnosis of inflammatory demyelinating diseases (IDD) with similar phenotype to neuromyelitis optica (NMO) spectrum disorder (NMOSD), including optic neuritis (single or bilateral) and transverse myelitis
Diagnosis of autoimmune myelin oligodendrocyte glycoprotein (MOG)-opathy
Diagnosis of NMO
Distinguishing NMOSD, acute disseminated encephalomyelitis (ADEM), optic neuritis, and transverse myelitis from multiple sclerosis early in the course of disease
Diagnosis of ADEM
Prediction of a relapsing disease course
Reflex Tests
Test ID | Reporting Name | Available Separately | Always Performed |
---|---|---|---|
MOGTS | MOG FACS Titer, S | No | No |
Testing Algorithm
When the results of this assay require further evaluation, the reflex titer test will be performed at an additional charge.
Method Name
Flow Cytometry
Reporting Name
MOG FACS, SSpecimen Type
SerumSpecimen Minimum Volume
1 mL
Specimen Stability Information
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Serum | Refrigerated (preferred) | 28 days | |
Frozen | 28 days | ||
Ambient | 72 hours |
Reference Values
Negative
Clinical Reference
1. Wingerchuk DM, Lennon VA, Lucchinetti CF, et al. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6(9):805-815
2. Apiwattanakul M, Popescu BF, Matiello M, et al. Intractable vomiting as the initial presentation of neuromyelitis optica. Ann Neurol. 2010;68(5):757-761
3. McKeon A, Lennon VA, Lotze T, et al. CNS aquaporin-4 autoimmunity in children. Neurology 2008;71(2):93-100
4. Pittock SJ, Weinshenker BG, Lucchinetti CF, et al. Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch Neurol. 2006;63(7):964-968
5. Fryer JP, Lennon VA, Pittock SJ, et al. AQP4 autoantibody assay performance in clinical laboratory service. Neurol Neuroimmunol Neuroinflamm. 2014;1(1):e11
6. Waters PJ, McKeon A, Leite MI, et al. Serologic diagnosis of NMO: a multicenter comparison of aquaporin-4-IgG assays. Neurology. 2012;78(9):665-669
7. Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet. 2004;364(9451):2106-2112
8. Peschl P, Bradl M, Hoftberger R, et al. Myelin oligodendrocyte glycoprotein: deciphering a target in inflammatory demyelinating diseases. Front Immunol. 2017;8:529
9. Pittock SJ, Lucchinetti CF. Neuromyelitis optica and the evolving spectrum of autoimmune aquaporin-4 channelopathies: a decade later. Ann NY Acad Sci. 2016;1366(1):20-39
10. Hyun JW, Woodhall MR, Kim SH, et al. Longitudinal analysis of myelin oligodendrocyte glycoprotein antibodies in CNS inflammatory diseases. J Neurol Neurosurg Psychiatry. 2017;88(10):811-817
11. Waters P, Woodhall M, O'Connor KC, et al. MOG cell-based assay detects non-MS patients with inflammatory neurologic disease. Neurol Neuroimmunol Neuroinflamm. 2015;2(3):e89
12. Reindl M, Jarius S, Rostasy K, Berger T. Myelin oligodendrocyte glycoprotein antibodies: How clinically useful are they? Curr Opin Neurol. 2017;30(3):295-301
13. Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177-189
14. Jarius S, Ruprecht K, Kleiter I, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: Frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. J Neuroinflammation. 2016;13(1):279
Day(s) Performed
Monday, Tuesday, Thursday
Report Available
5 to 8 daysPerforming Laboratory
Mayo Clinic Laboratories in RochesterTest Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.CPT Code Information
86363
86363-titer (if appropriate)
LOINC Code Information
Test ID | Test Order Name | Order LOINC Value |
---|---|---|
MOGFS | MOG FACS, S | 90248-6 |
Result ID | Test Result Name | Result LOINC Value |
---|---|---|
65563 | MOG FACS, S | 90248-6 |
Interpretation
A positive value for myelin oligodendrocyte glycoprotein (MOG)-IgG is consistent with a neuromyelitis optica-like phenotype and, in the setting of acute disseminated encephalomyelitis, optic neuritis and transverse myelitis, indicates an autoimmune oligodendrogliopathy with potential for relapsing course. Identification of MOG-IgG allows distinction from multiple sclerosis (MS) and may justify initiation of appropriate immunosuppressive therapy (not MS disease-modifying agents) at the earliest possible time. This allows early initiation and maintenance of optimal therapy. Recommend follow-up in 6 to 12 months, as persistence of MOG-IgG seropositivity predicts a relapsing course.
This autoantibody is not found in healthy subjects.