Test Code C9ORF C9orf72 Hexanucleotide Repeat, Molecular Analysis, Varies
Useful For
Molecular confirmation of clinically suspected cases of c9FTD/ALS, frontotemporal dementia (FTD), or amyotrophic lateral sclerosis (ALS)
Presymptomatic testing for individuals with a family history of c9FTD/ALS and a documented expansion in the C9orf72 gene
Special Instructions
Method Name
Polymerase Chain Reaction (PCR)
Reporting Name
C9orf72, Molecular AnalysisSpecimen Type
VariesShipping Instructions
Specimen preferred to arrive within 96 hours of collection.
Specimen Required
Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. Call 800-533-1710 for instructions for testing patients who have received a bone marrow transplant.
Specimen Type: Whole blood
Container/Tube:
Preferred: Lavender top (EDTA) or yellow top (ACD)
Acceptable: Any anticoagulant
Specimen Volume: 3 mL
Collection Instructions:
1. Invert several times to mix blood.
2. Send specimen in original tube.
Specimen Minimum Volume
1 mL
Specimen Stability Information
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Varies | Ambient (preferred) | ||
Frozen | |||
Refrigerated |
Reference Values
Normal alleles (reference):<20 GGGGCC repeats
Indeterminate alleles: 20-100 GGGGCC repeats
Pathogenic alleles: >100* GGGGCC repeats
*The exact cutoff for pathogenicity is currently undefined. Although additional studies are needed to confirm if 100 repeats is the cutoff for pathogenicity, most individuals affected with a C9orf72-related disorder have C9orf72 hexanucleotide repeat expansions with hundreds to thousands of repeats.
An interpretive report will be provided.
Interpretation
An interpretive report will be provided.
Clinical Reference
1. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011 Oct 20;72(2):245-256
2. Renton AE, Majounie E, Waite A, et al: A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011 Oct 20;72(2):257-268
3. Gijselinck I, Van Langenhove T, van der Zee J, et al: A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neuron. 2012 Jan;11(1):54-65
4. Majounie E, Renton AE, Mok K, et al: Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 2012 Apr;11(4):323-330
5. Boeve BF, Boylan KB, Graff-Radford NR, et al: Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain. 2012 Mar;135(Pt 3):765-783
6. van Blitterswijk M, DeJesus-Hernandez M, Niemantsverdriet E, et al: Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study. Lancet Neurol. 2013 Oct;12(10):978-988
7. Nordin A, Akimoto C, Wuolikainen A, et al: Extensive size variability of the GGGGCC expansion in C9orf72 in both neuronal and non-neuronal tissues in 18 patients with ALS or FTD. Hum Mol Genet. 2015 Jun 1;24(11):3133-3142
8. Xi Z, van Blitterswijk M, Zhang M, et al: Jump from pre-mutation to pathologic expansion in C9orf72. Am J Hum Genet. 2015 Jun 4;96(6):962-970
9. Gami P, Murray C, Schottlaender L, et al: A 30-unit hexanucleotide repeat expansion in C9orf72 induces pathological lesions with dipeptide-repeat proteins and RNA foci, but not TDP-43 inclusions and clinical disease. Acta Neuropathol. 2015 Oct;130(4):599-601
10. Ng ASL, Tan EK: Intermediate C9orf72 alleles in neurological disorders: does size really matter? J Med Genet. 2017 Sep;54(9):591-597
11. Nordin A, Akimoto C, Wuolikainen A, et al: Sequence variations in C9orf72 downstream of the hexanucleotide repeat region and its effect on repeat-primed PCR interpretation: a large multinational screening study. Amyotroph Lateral Scler Frontotemporal Degener. 2017 May;18(3-4):256-264
12. Van Mossevelde S, van der Zee J, Cruts M, Van Broeckhoven: Relationship between C9orf72 repeat size and clinical phenotype. Curr Opin Genet Dev. 2017 Jun;44:117-124
Day(s) Performed
Tuesday
Report Available
21 to 28 daysPerforming Laboratory
Mayo Clinic Laboratories in RochesterTest Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.CPT Code Information
81479
LOINC Code Information
Test ID | Test Order Name | Order LOINC Value |
---|---|---|
C9ORF | C9orf72, Molecular Analysis | 81846-8 |
Result ID | Test Result Name | Result LOINC Value |
---|---|---|
52852 | Result Summary | 50397-9 |
52853 | Result | 77635-1 |
52854 | Interpretation | 69047-9 |
52855 | Reason for Referral | 42349-1 |
52856 | Specimen | 31208-2 |
55158 | Method | 85069-3 |
52857 | Source | 31208-2 |
52858 | Released By | 18771-6 |
Forms
1. New York Clients-Informed consent is required. Document on the request form or electronic order that a copy is on file. The following documents are available:
-Informed Consent for Genetic Testing (T576)
-Informed Consent for Genetic Testing (Spanish) (T826)
2. Molecular Genetics: Neurology Patient Information
3. If not ordering electronically, complete, print, and send a Neurology Specialty Testing Client Test Request (T732) with the specimen.
Testing Algorithm
For more information see Inherited Motor Neuron Disease and Dementia Testing Algorithm